
Microscopy Toolkit

Table of Contents:

Motivation / Introduction

Outline of the program structure

Labview in .Net

 -How to add a .Net control to Labview

 -How to create a .Net Invoke Node

 -How to deal with Errors

1. Starting EasyCore

 1a. Creating a Device

 1b. Displaying an Image

2. Getting the Data: Converting Images to Arrays

3. Streaming Camera/ Saving Images

4. Adding Stage Control /Adding More Devices

5. Programmatically Adjust Device Values

6. Advanced Joystick Control

7. Putting it all together/Labview in Full Control

8. Working with Channels

9. Image Processors / Running Micromanager.Net in Parallel with

Labview

10. Automatic Channel/Stack Handling

11. Loading from Hardware Config File (The easy way/The most

flexible method)

12. Adding Micromanager.NET manually to Labview Menus.

Microscopy Toolkit

 Experimental microscopy often requires an experimentalist to build a

new setup from scratch, outside the normal parameters of the standardized

commercial microscopy solutions. For example, when using an optical trap,

one might want to be able to use a joystick to move an optical stage around

but also to switch from manual operation of the stage to a computer

controlled operation after a certain trigger is detected by a Labview program

that is used to analyze the microscopy images.

We present a scripting toolkit for the acquisition and analysis of a

wide variety of imaging data by integrating the ease of use of various

programming environments such as Labview, Igor Pro, Mat lab, Skylab and

so forth [REFS]. This toolkit is designed to allow the user to quickly

program a wide variety of standard microscopy components for custom

microscopy applications. Included are both programming tools as well as

graphical user interface (GUI) classes allowing a standard, consistent and

easy to maintain scripting environment.

 Setting up a custom microscopy solution requires a period of time in

which Labview or some other programming environment is used to program

the required behavior for the components making up the specific experiment.

This process often requires assembling a lot of code to set up the

microscope, camera, stage, shutters and other equipment on the table. This

can require extensive troubleshooting or result in code that can only be used

for that one particular application. There are already many microscopy

software solutions on the market, allowing acquisition and analysis of

images as well as control over a commercial microscope. These packages

are limited in two important ways. First, they are often proprietary, making

them both expensive and difficult to change. Second, they are often single

purposed for one particular brand of equipment. This package is intended to

be a powerful and free replacement for such programs as Scientific Imaging

Toolkit, Chicago, SIDX, or Digital Optics.

 In order to solve this problem, the Micromanager1 project has been

attempting to build a constant application programming interface (API) that

can take the complexities of hardware programming and provide a constant

and easy to use interface for any application. The Micromanager project

uses Java to program its GUI. While Java is a powerful programming

language, it lacks the ability to interface with many other programming

languages that are used experimentally, notably Labview and Igor Pro. In

addition, the Java Native Interface can make importing machine native

libraries difficult. We present a solution that leverages the power of the

Micromanager platform to most of the common scripting and image analysis

scripting languages. The API has been tested with Labview, R2, Scilab3,

Matlab and python (with SciPy4). The API has plugins that can feed the

acquired images back into ImageJ5 returning the circle to Java compatibility.

 This toolkit was created with C#, a .Net language from Microsoft.

The .Net framework allows a great number of programming languages and

interfaces to work together including C#, visual basic, C++, python and

ruby, as well as many more. C# was chosen as the .Net framework

language for its power, speed, and also for its similarity with Java.

 This tutorial will consist of a number of simple examples that show

how to access the micromanager core, a number of simple examples of how

to control the camera and a variety of devices, and finally a fully automated

version of the device.

Overview of Program structure.

Figure 1: A general overview of all the ways that you can use the package

to link c++, microscopy devices and any number of higher level

programming languages.

 Microscopy Toolkit is designed to leverage the considerable power of

the Micromanager program for use in scripting applications. In order to help

the end user in using the full power of this program, a quick overview of the

Micromanager library is included.

Micromanager
API

Camera Hardware
Adapters

 Stage Filter
Wheel

DAQ

C+
+

Easy
Core

.Ne
t

Scripting
Devices

Device GUIs

DCOM

3rd
Party

LabView

Visual Basic

R/Scilab

Python

Matlab

…

Core
Wrap

ImageJ

Jav
a

Stand Alone
Application

…

 The Micromanager library provides a consistent set of interfaces for a

number of common microscopy tools such as cameras, filter wheels, shutters

and stages. These interfaces provide the means for Micromanager to talk to

either a Thorlabs filter wheel or a Leica filter wheel seamlessly. The

addition of new hardware adapters to the system can be accomplished by

creating a new hardware adapter using the interfaces defined by

Micromanager. Creation of these adapters is shown on the Micromanager

website (http://www.micro-manager.org/documentation.php).

 Once the Micromanager engine is set up, it is possible to use the

overlaying API, which we call EasyCore, to control the microscopy system

Graphical Interface. For maximum power, the Micromanager.NET engine is

set up with two components for each possible microscopy device. The first

component has does all the hard work for scripting the device and handling

device properties. The second device is a graphical component that has all

the buttons for the user to interact. For an example, the package includes a

device component for running a signal IO DAQ. There are two specific GUI

components that work with the signal IO component. One is a signal

generator and one is a galvo driver. All components work as plugins so they

can be inserted into the code with ease to make the program even more

powerful.

This allows the maximum flexibility and power of the Micromanager

framework, while shielding the user from the complexity of C++. Finally,

the framework allows microscopy devices to be added into Micromanager

which are difficult to control from C++, such as .Net controls, COM widgets

and activeX controls. Everything can be linked into one easy to use

package. A document on the engine will be created at a further time. This

will be specific for the .Net framework.

Instructions on use with LabView
 This help file is structured as a list of common microscopy tasks in

LabView. Along the way, we will try to explain how the different

components of the code work together. The examples discussed here are

available for download in LabView version 8.2.

 Creating Cameras

 Getting to the data: converting images to arrays

 Creating a streaming camera

 Adding Stage control

 Programmatically adjusting device properties

 Adding a joystick

 Automatic View

First you’ll get an idea of how to work with the microscopy toolkit in

LabView and then we will work our way to a virtual microscope with a

camera and a stage with a joystick control.

It takes several steps to make a simple application that opens a camera

and then displays the image on the screen after the brightness and contrast

have been adjusted. We have to import .Net into Labview, then we have to

start the EasyCore API and then we will create a camera. Along the way we

will explain two things that most LabView users will appreciate a tutorial

on: how to import a library and how to invoke nodes. An example of the

resulting Front Panel is shown below.

 Importing .Net

The first thing that must always be done is to start the Micromanager core.

This is performed by starting the .Net Invoke Node. In LabView this is done

by opening a blank VI, and while in the front panel, right clicking on the

front page and finding the

For Labview 8.0 the controls will appear in a submenu of .NET & ActiveX

Controls

Micromanager.NET tab and then clicking on the NIEasyCore box. Drag the

NIEasyCore control to the front page to begin. This will allow Labview to

use the functions of the Micromanager library.

Invoke Nodes

Now switch to the block diagram to wire this simple example. Right click

on the NIEasyCore terminal, use the .Net palette to select the invoke node as

shown in Figure 5. This lets the Labview program call functions inside of

.Net. .

Figure 5. Two ways to get to the .Net Invoke nodes.

Now wire the NIEasyCore terminal to the invoke node’s reference node and

then right click on the Method line. As you can see on the Block diagram as

well as in Figure 6, the NIEasyCore terminal has many callable functions

related to its function as a front panel control. There are only two functions

that should interest most users. Use Select Method and then find

StartEcore from the list.

Figure 6.

1. Starting EasyCore

(This lesson corresponds to Tutorial1_Start Camera.vi in the examples

folder)

 There are two ways to run Micromanager.NET: 1. Manually set up the

cameras and peripherals and then run all the operations in the Labview

script. 2. Load a hardware config file and then listen in to the self standing

operation of the suite, while directing operations from the script.

Option #1 is good for learning how to use the suite, so it is taught first in the

manuals, but option #2 is better for operations, so you should familiarize

yourself with the manual options and then start work on the hardware config

files.

StartEcore requires one parameter to start. A blank string is used to

provide this parameter indicating to StartECore that there is no config file,

config files are a powerful method to define the microscope and then interact

with the system. The result should resemble Figure 7

Figure 7.

 StartEcore now provides most of the important functions for

controlling the whole microscopy setup, but NIEasyCore has one more

function that makes using Micromanager.Net easier. This is the GetHelpers

function that is dedicated to making a few steps easier in the Labview

environment. This function must be called only after the StartCore Node has

been called. In order to perform this step, a .Net invoke node is again placed

on the block diagram and the reference is wired to the previous node.

Figure 8.

1a. Creating a Device

 GetHelpers contains functions for creating a number of devices in the

Labview environment. We place another .Net Invoke node on the block

diagram to create the camera device. We must now wire the GetHelpers

block to the new invoke block and then provide 3 different parameters to

determine what kind of camera is desired.

Figure 9

 The first parameter, DeviceName, is arbitrary is used to index the

camera. For simplicity it is called “camera”. The next parameter refers the

Micromanager library name, last is the DeviceAdapter. The names of these

parameters refer to the device adapters that tell Micromanager how to

function. If you need to find these names, there is a VI in the example folder

called FindLibraryAndDevice.vi that shows the names of the libraries and

their contents for all adapters on the system. You can also ask about this on

the forum.

 In this case we are just building a demo camera that does not attach to

any hardware. This is done by telling the system to index this device as

“camera”, use the library “DemoStreamingCamera” and finally used the

“DStreamCam” for the adapter. This gives a very simple and boring

demonstration camera for the system.

 Next an invoke node is used to MakeOfficial shown in figure 10,

meaning this camera should be used as the primary camera for the whole

system. Last, the property list has to be attached to camera to give the user

full control of the camera on the front panel of the VI. This is done very

simply by telling the camera where its property list is with the SetPropUI

Invoke node as seen in figure 10.

Figure 10.

1b. Displaying an Image

 Now the camera is turned on and ready to go. It is now time to

acquire the first image. This is done by using another .Net Invoke node

which is connected to the camera line and then the method that is selected is:

SnapOneFrame as shown in figure 11. This method takes one parameter,

DisplayImage. This parameter is for more advanced usage and is set to

false for now.

Figure 11.

The result of this node is a CoreImage. This is a powerful tool for the

manipulation of intensity images. It can be used for image addition,

subtraction, extraction of statistics and to change the image into a Labview

array. For now, it will just be used to set the contrast of the image and

display it on the screen.

 A Look Up Table (LUT) is a common method to adjust the contrast of

microscopy programs. The NILutGraph is designed to help the end user to

set the contrast easily. So the Coreimage is sent to the NILutGraph for

contrast adjustments with a .Net invoke node as shown in figure 12.

Figure 12.

 This results in another CoreImage which has its contrast settings set as

defined by the NILutGraph control. This image is now sent to the

PictureBoard for display as shown in figure 13.

Figure 13.

 We have now managed to set up a camera, make it so the end user can

adjust the camera as desired and then taken a picture. This took 8 simple

invoke nodes to accomplish and can be greatly improved upon with even a

slight level of programming ability. The next sections will show how to

make an even more effective microscopy setup. It may be useful to now try

this program with your own camera to check the performance.

2. Getting the Data: Converting Images to Arrays

(This tutorial corresponds to the Tutorial2_Image Manipulation.vi File in

example Folder)

 It may be useful for your particular application to have the data in an

array format or in a format that can be used with the NI vision package.

This is done very easily after looking at the Tutorial1.VI file you can make a

few small modifications. The CoreImage object has a variety of tools to

convert the intensity image into a variety of array types for use with normal

Labview or NI vision components. The CoreImage class has a large number

of functions for these types of manipulation. Using the proceeding example,

we will insert a command to convert the image to an array. Figure 2.1

shows this insertion.

Figure 2.1

By right clicking on the GetArrayInt16 invoke node and then using Select

Method you can see that there are a number of GetArrayXXX methods.

Select the appropriate data type and then the output will be an array

containing the image in an array type. This array can be manipulated in any

number of ways, so the inverse will be performed and then the new image

sent back to the PictureBoard as shown in figure 2.2.

Figure 2.2

 You must select the correct input type into the

CreateImageFromArray method. The result is a new CoreImage that works

the same as before for display and manipulation.

3. Streaming Camera/ Saving Images
 For some situations, it is necessary to have the camera operate in a

streaming mode. It is also important to save your images. This means that

the camera sends a series of images to the computer with no break. This can

result in a flood of information entering the camera. For this mode the

camera is started in the same manner as in example 1.

Figure 3.1

 Next working with streams requires 4 commands, which figure 3.2

shows.

Figure 3.2

 StartSequence must be called first which tells Micromanager.Net to

set up all the variables for a sequence acquire. You must specify how many

frames the camera should send, as well as the interval between the frames in

milliseconds. Last, you can specify if the internal system should display the

image. This option should be false at this time.

 Next, the frames need to be read from the buffer as they are grabbed

from the camera. There are two options provided here.

GetBlockingSequenceFrame waits until a new frame is acquired and then

the image is returned, GetSequenceFrame will read from the buffer and

return an image, a null, or an error depending on the state of the buffer. It is

you requirement to deal with these eventualities. It is recommended that the

GetBlockingSequenceFrame is used. Last the Sequence should be formally

ended with EndSequence. Tutorial 3 gives a simple example of the

sequence tool in action.

 Last we save the last frame from the sequence in two different

formats. This is done by calling the Save .Net Invoke Node on the

CoreImage after it comes out of the camera.

Figure 3.3

 You must specify the filename. The extension of the filename will

determine what format the file will be saved. If you are saving a stack, then

the multipage option can be used.

4. Adding Stage Control /Adding More Devices
(This tutorial corresponds to the file Tutorial5_Camera and Stage.vi)

Adding a stage to the camera is even easier than working with the camera.

First you should tell EasyCore that you want to start and stage device. This

is done with the line from the GetHelpers node. An example is showing in

figure 4.1. Information about the meaning of all of these .Net invoke nodes

is shown in section 1.

Figure 4.1

 After these nodes have been passed, there are a few commands that

can be sent to the stage to control its position. These are shown in figure 4.2

Figure 4.2

 MoveStageRelative will move a distance relative to the current stage

position, it will return before the motion is complete. MoveStageAbsolute

will move the stage to an absolute position, it will return before the move is

complete. The meaning of this absolute position depends on the make and

type of the stage and should be checked with your equipment manual. Last

is MoveStageGuarantee. This Invoke node will send the stage to some

absolute position and then return after that position has been reached.

 If you wish to stop the current motion, StopStage is used and last if

the current position of the stage is needed, GetStagePosition will return the

position as the stage equipment reports it.

 Now we will connect the output of CreateXYStageDevice to the

MoveStageRelative node in order to move the stage around. In order to

control the stage we use two sliders, one for the X axis and one for the Y

axis. This is for simplicity and the Micromanager.Net library provides a

nice joystick control for this purpose. This joystick control is shown in later

examples. The MoveStageRelative node is placed inside a while loop as

shown in figure 4.3 so it will be called over and again. By default the

previous command is cancelled and then the new command is used to

control the stage. The sliders are set back to zero in order to have the stage

stop once the mouse releases the axis slider.

This same loop should contain the code to acquire images. In this way an

image will be acquired while the stage is adjusted allowing precise

adjustment of position.

 The tutorial camera does not change with the stage position as the

demo camera does not communicate with the demo stage.

 Any further device can be added in a similar fashion allowing easy

control of the microscopy setup with any number of difference devices.

5. Programmatically Adjust Device Values
(This chapter corresponds to the file Tutorial6_Device Properties.vi)

 It may be required to change the various parameters of each device

within the program instead of just allowing the user to adjust these values

from the PropertyList. There are a number of tools to control all the

devices in a consistent and powerful way. First, you can get information

about the device by querying the device for its property information. After

setting up a camera as was done in example 1, a new invoke node can be

called, GetDevicePropertyNames. This node will return all the properties

associated by the device adapter as shown in figure 5.1. This list changes

from camera to camera, you must make allowances for your own equipment.

Figure 5.1

 These properties names are all case sensitive so you must get both the

spelling and the case right or an error will be generated.

 Once the property names are know, it is quite easy to manipulate the

values as shown in figure 5.2. SetDeviceProperties allows a new value to be

placed in the property. When this is done, the PropertyList will also be

updated for the end user to see what is happening. GetDevicePropertyValue

will query the program for the current value. With these two commands you

can control almost any part of the microscopy setup. One thing must be

considered, the information must be passed as a string for all variable types.

This is a feature of the Micromanager core to allow the maximum control

and flexibility for the properties. It is quite straightforward to convert the

values to strings and back to values in Labview and you can see this in the

tutorial VI.

Figure 5.2

 Last, it may be desirable to write a VI that adapts to what camera is

being used. This requires just one more .Net Invoke node that returns all the

information about a property to allow full control and advanced FrontPage

information. As shown in figure 5.3, GetDevicePropertyInfoDetails returns

all the information about what a property can do. You must specify which

property you need the info for and then you will get a number of variables in

return. First is the current value of the property, next is HasLimits. This is

true if the value must fall between a certain max and min given by

MaxValue and MinValue. These values are meaningless if HasLimits is

false. Next is the property type. Types can be Undef, String, Float, or

Integer. Some times the properties are only there for reporting, so ReadOnly

is set to true. Last, if the property has only a set of allowed values, these

will be specified with HasAllowedValues and then the values will be in

AllowedValues in a string format. With this information it is possible to

construct your own control that functions like the PropertyList or for the

program to already know what the limits can be for gain.

Figure 5.3

6. Advanced Joystick Control
(This tutorial corresponds to the file Tutorial7_Joystick Control.vi)

 As Labview does not have a nice joystick for use with the stage, the

Joystick Control is provided. Click on the Menubar at the top of the front

panel, the Tools/import/.Net controls to palette. Now click the browse

button to navigate to the directory with Micromanager.Net. There you will

find a file called JoystickInterface.dll. There you can click on the only

available control, the Joystick as shown in figure 6.1.

Figure 6.1

 Now you can place the joystick on the Front panel in order to make it

useful. Do this by right clicking on the Front panel, then finding the .Net &

ActiveX menu and finding the Joystick Icon.

 The result is something that looks like figure 6.2. The orange ball can

be pulled around by the mouse to control the stage, or will react to any plug

& play type of joystick that has been added to the system. Further support

for other mouse buttons will be added later.

Figure 6.2

The joystick has a few simple methods that can be used on the block

diagram to control its behavior. First you must connect the Joystick control

to the interface and to the game ports. This is done with the

BeginJoystickAction node as shown in figure 6.3. If you have a plug & play

joystick attached to the system, you can specify true for the parameter, and

the joystick will search for the hardware. The hardware must not be in use

with any other application for this to work and

Figure 6.3

 Once the joystick is started we can begin. It is possible to receive

event notifications when the joystick is moved, or to just check the state of

the joystick on each iteration of a while loop. This is done with the

GetJoyStickCoords node as shown in figure 6.4. This node returns the

current joystick state. The default returned value is from -1 to 1 for joystick

control. You must multiply this value by a scale factor that is appropriate

for your microscope.

Figure 6.4

 Last, if you are using a physical joystick, you may wish to know the

state of the buttons. GetJoyStickButtonState returns all the button’s states

on each query. You must map the index of the array to your particular

joystick. (This is done most easily by pushing the buttons and seeing what

part of the array changes)

7. Putting it all together/Labview in Full Control
 (This chapter corresponds to Tutorial8_Camera_Stage_Filter.vi)

 There are no new concepts introduced in tutorial7, it is instead an

example of how multiple devices can be integrated with a nice graphical

user interface to produce a very simple microscope. You can add scripting

at will with this setup.

8. Working with Channels
 (This chapter corresponds to the file Tutorial9_Channels.vi)

 Channels allow the microscope to change its configuration in any

definable way and images to be made. These changes can be movement of

filter wheels, application of lamps or changes of exposure. They always

include the changing of the properties of the microscope. We will start the

microscope in the same manner as we have for all the other tutorials, with

StartEcore, GetHelpers and CreateCamera. But we must add a new .Net

control to the vi, so select the front panel and then Tools/Import/.Net

controls browse to the Micromanager_net.dll and then when the names are

listed expand the channels tab and select ChannelSetupControl. Place two

of these controls on the front page. Next the channels must be created. This

is done in the context of a ChannelGroup which is found in The helpers

object as shown in figure 8.1

Figure 8.1

 You must provide names of these controls and also an array of the

ChannelSetupControls. The numbers must be equal or an error will be

generated.

 The Helpers object will generate a ChannelGroup object with two

channels that are already defined. So now we can put commands into the

channels.

Figure 8.2

 Channelgroup has a GetChannel command that will extract each of the

channels. Then you can use AddCommand to setup the channel. You can

have any number of commands, but in this case we will only have one. The

devicename must match the device name from createCameraDevice earlier.

In the first channel we with to have a dim exposure of 1 ms as shown in

figure 8.2. In the second channel, we have a longer exposure of 100ms.

Figure 8.3

Last we enter into a loop to collect images. Now we use channelgroup to

switch from one channel to another to collect images. The images are sent

first to one PictureBoard and then the other.

 This technique is very valuable if a number of changes must be made

at the same time. Then the program can take care of monotonous changes

and RunChannel is all the programmer has to use. This is also very useful if

the end user wants to be able to change the channel definitions as the

program is running from the ChannelSetupControls.

9. Image Processors / Running Micromanager.Net

in Parallel with Labview

(This tutorial works with the file Tutorial9.0_Image Catching.vi &

Tutorial9.2_Register Paint Board.vi)

 There a number of situations where you would want Labview to run

some piece of equipment, while Micromanager.Net mostly runs

independently. This will greatly improve the speed, as well as allowing you

to do less work in maintenance of your VI. This will also be an

improvement for flexibility once you learn how to implement a hardware

configuration file.

 To introduce the concept of imageprocessors, we will wait to show the

information about config files until later. For this VI we start in the

normal method of StartEcore, GetHelpers, and CreateCameraDevice as we

have for most of VIs up to this point. After this, a change is made. We must

register the PaintBoard surface directly with Ecore, as well as assigning a

LUTgraph to the PaintBoard surface. As shown in figure 9.1, this is

performed with the AttachLUTGraph and the PaintSurface .Net Invoke

Nodes.

Figure 9.1

 Now Micromanager.Net knows how to handle any image that is

produced. You tell it to take images by telling the camera to use the

StartFocusMode invoke node . You can run the VI

(Tutorial9a.vi) at this point and you will see that the images are collected

very quickly.

 Now you have the images appearing on the screen quickly, but they

are not being saved. Micromanager.Net provides a method to listen in on

the stream of images and then manipulate them if needed. This is by

inserting an imageprocessor. You must place the NIImageProcessor on the

front page. You can have multiple imageProcessors if needed, each will

react to the emission of a new Image individually. In order for an

ImageProcessor to work, it must be registered with EasyCore. This is done

with RegisterAsImageProcessor

 You should give the processor a descriptive name, if you planning on

adding multiple ImageProcessors to the system. You must decide if you

want the image processor to be blocking or not. If it is blocking,

Micromanager.Net waits for your code to finish before acquiring the next

image. Otherwise it just sends all the images over as fast as possible. This

can be good, unless the Labview system is too slow and the memory fills up.

All three examples use Blocking because it is safer.

 Now Micromanager.Net knows that you wish to process Images, it

knows where you want to display the images, and you have told it to start

getting images. Now a listening loop is needed to catch the images. This is

accomplished with a normal while loop.

The while loop checks if there has been an image acquired, and when one is

in the ImageProcessor buffer, The program moves to the next loop. Instead

of a single Image like there has been before, an array of images is returned.

This is due to the channel stacks. They are returned as arrays to help any

processing. So we can check how many images are in the ImageStack and

then use GetImage with the proper index. The image is then manipulated,

and finally PutImage sends the image back to Micromanager.Net. The very

last step of the process is to call ImagesAreProcessed. This must be called

as it notifies Micromanager.Net to get new images. This must be outside the

loop and must be the last thing that is executed. Strange errors will appear if

this rule is not followed.

 Now this example does not make sense as it saves every image to the

same name, but it should be easy for you to adapt it to your needs.

10. Automatic Channel/Stack Handling
 If you want to acquire a number of images from multiple channels

in a way that does not require a lot of programming effort. We are almost

there with Tutorial10b.vi so we will start there. First the Microscope is

setup in the same way as normal. First StartEcore, GetHelpers,

CreateCameraDevice (see chapter 1). Then we have our first new concept. I

wish to have each channel in its own window, so I must register the same

number of windows as channels.

 This is quite easy in practice as can be seen in Figure 10.1

Figure 10.1

 First a LUTgraph is attached to each Pictureboard, then the

PictureBoards are wired into an array and then EasyCore is notified of the

addition.

 The next section of the graph shows the standard process for setting

up a channel. See chapter 8 to get a better idea about how this works. We

are now ready to acquire images with the PaintBoards registered, the

channelgroup registered and the channels registered.

The acquiring is performed by the RunChannelAcquisition Invoke

Node. There are a large number of parameters that must be addressed.

ActiveGroup indicates the created Channelgroup. You can decide to use a

different camera to get these images than the default camera, so you must

provide the device name. Next you choose the time from one frame to the

next, last you can decide here if you wish to save this sequence of images.

You must specify a directory and a root filename. Numbers will be added to

the filename to make the frames distinguishable. Last is the number of

frames that you wish to acquire. -1 results in never ending images.

A second powerful help in getting stacks is the RunZStackAcquision.

This Invoke node has all the tools needed to make a stack, a stack of all the

channels, and many other options.

In Tutorial10.vi we return to ImageProcessors. If you wish to

manipulate the channel data in anyway, the imageprocessors provide the best

method. It is clear that Tutorial10.vi is the same through the whole top of

the program as Tutorial10b.vi was. It is also clear that the Imageprocessor

step was just covered in chapter 9. When the image is captured by the

imageprocessor, it is sent through a trivial step and then returned to the

main program. This is done for both channels as shown by the for loop.

This could be done with separate processing for each channel. This is only

important for the user’s application. Last, you must notify the

Micromanager.Net program that you are done with that image by using the

ImagesAreProcessed invoke Node.

11. Loading from HardwareConfig File (The easy

way)
(This Tutorial links to Tutorial_ConfigFile_Device Control.vi,

Tutorial_ConfigFile_Image Capture.vi, Tutorial_ConfigFile_Make

Hardware Config File.vi, and Tutorial_ConfigFile_Load Config File.vi)

 After all these other channels, this chapter is going to feel like a

letdown. It makes it so easy to control the microscope with so little

programming. First we must create a Hardware Config File. This is done

with one of the commands in NiEasyCore called NewHardwareConfig.

 When this command is called, you must specify where the config file

should end up (directory name) and specify the config file name. It must be

a name that ends with xml, just like the example.

 A dialog will pop up and you must answer the questions to setup the

hardware. An example if shown in figure 11.1. The DeviceUI list should be

easy to guess the correct GUI from. Some experimentation can help find the

rest of the devices. The FindLibraryAndDevice.vi file will show all these

devices spread out to help you to identify your hardware.

Figure 11.1

Once everything is selected you should click the next step button. This will

bring up the properties page for your first device as shown in figure 11.2

Figure 11.2

 To the left is checkboxes called Save Property. This means that the

property in line with this checkbox will be included in the hardware config

file. Some properties such as location and exposure should not be saved

normally, but others like axis assignments , starting filter wheel locations,

and COM ports should be saved here in the config file. Set those special

properties to the correct values, check the save box of those properties that

you wish to save and then click Next Device to move through the list.

When you are finished with the setup, the files will be generated for this

setup and then you will be able to see your hardware setup.

You already have a very capable microscope for use in the lab.

 Now to reopen the config file, the procedure is extremely easy. It

takes only three commands to be able to reach all the devices, channels,

channel groups and recording possibilities of Micromanager.Net. Here is

the figure.

So StartEcore is started with a config file, the config file tells EasyCore how

to put together the microscope. DisplayGUI puts together the FrontPage, and

finally PaintSurface shows the images. The Record and Save tools manages

the recording and saving as well as Channels and ChannelGroups. There are

stages, joysticks and all the other tools needed.

 You may wish to have direct programmatic control of some part of the

system. This is possible as EasyCore stays active on the MainVI. Here is a

shot of the newly loaded interface.

 The reason all the devices are named is so they can easily be accessed from

EasyCore. If we wish to interact with the camera during the acquisition, this

is possible by asking EasyCore for access to the camera.

 This is achieved by GetDevice. You must enter the name exactly the

way it has been loaded. If you are not sure of the names, you can find them

in the hardware config file. Usually the camera is names “camera”, so we

collect the camera. Now, in order to use the power of the camera object, it

must be converted from a generic device into a camera. GetHelpers

provides a number of functions for all the common devices, so we used

CastToCamera. Now a fully functional camera is available for use. Since

the demo camera includes “Gain” as one of its properties, this is my target

property and I actuate the gain with a squared sine wave.

On the demo camera, this does nothing for the image, so you have to

navigate to the property page in order to see the gain moving.

 If your application requires image processing, the NIImageprocessor

works the same as it did in chapter 8 allowing full control of the imaging

processes.

Supplement

1. Adding Micromanager.Net tools to the Controls Menu manually.

Tools/Import/.Net Control to Palette on the upper menu (This menu

sequence changes in some versions of Labview, but there is always an

option to import a .Net control into Labview in the tools menu). This will

bring up a dialog as show in figure 2

Figure 2.

Click the browse button to import a custom .Net library and then navigate to

the folder where Micromanager_net.dll is stored. This .dll is usually stored

in the same directory as the directory where all the example Labview VIs are

stored. Next, you will be able to select all the desired controls from the .Net

library. You must double click on CoreDevices.NI_Controls to get to those

controls. Select NIEasyCore all the controls under the NI_Controls tab as

shown in Figure 3.

Figure 3.

 The Labview program will load and convert these .Net controls to

Labview controls and then you will end up back at the blank VI. Now you

must right click on the front panel of the VI to get to the control menu.

Click the double down arrow on this menu to see all the options and you will

see a submenu listed as .Net & ActiveX. Click this item and use the mouse

cursor to discover the identity of each control. Place the NIEasyCore on the

front panel as shown in figure 4. Do the same for the NILutGraph,

NIPropList and PictureBoard controls which will be found in the same

submenu. All .Net controls which are imported can be found in this

submenu.

Figure 4

