Microscopy Toolkit

Table of Contents:

Motivation / Introduction
Outline of the program structure
Labview in .Net
-How to add a .Net control to Labview
-How to create a .Net Invoke Node
-How to deal with Errors
1. Starting EasyCore
la. Creating a Device
1b. Displaying an Image
2. Getting the Data: Converting Imagesto Arrays
3. Streaming Camera/ Saving | mages
4. Adding Stage Control /Adding More Devices
5. Programmatically Adjust Device Values
6. Advanced Joystick Control
7. Putting it all together/Labview in Full Control
8. Working with Channels
9. Image Processors/ Running Micromanager .Net in Parallel with
L abview
10. Automatic Channel/Stack Handling
11. L oading from Hardwar e Config File (T he easy way/The most
flexible method)

12. Adding Micromanager .NET manually to Labview Menus.

Microscopy Toolkit

Experimental microscopy often requires an expertalest to build a
new setup from scratch, outside the normal parasetethe standardized
commercial microscopy solutions. For example, whging an optical trap,
one might want to be able to use a joystick to maweptical stage around
but also to switch from manual operation of thegstdao a computer
controlled operation after a certain trigger isedétd by a Labview program

that is used to analyze the microscopy images.

We present a scripting toolkit for the acquisitiand analysis of a
wide variety of imaging data by integrating the ecaf use of various
programming environments such as Labview, Igor Rrat, lab, Skylab and
so forth [REFS]. This toolkit is designed to allave user to quickly
program a wide variety of standard microscopy camemds for custom
microscopy applications. Included are both programg tools as well as
graphical user interface (GUI) classes allowingtandard, consistent and

easy to maintain scripting environment.

Setting up a custom microscopy solution requirperéod of time in
which Labview or some other programming environmgmised to program
the required behavior for the components makinthegspecific experiment.
This process often requires assembling a lot oé¢odset up the
microscope, camera, stage, shutters and otherragotpon the table. This
can require extensive troubleshooting or resutode that can only be used
for that one particular application. There areatty many microscopy
software solutions on the market, allowing acqigsiand analysis of
Images as well as control over a commercial mia@pscThese packages

are limited in two important ways. First, they afeen proprietary, making
them both expensive and difficult to change. Sectral are often single
purposed for one particular brand of equipmentis plackage is intended to
be a powerful and free replacement for such prograsrScientific Imaging
Toolkit, Chicago, SIDX, or Digital Optics.

In order to solve this problem, the Micromanageoject has been
attempting to build a constant application prograngmnterface (API) that
can take the complexities of hardware programmimdy@ovide a constant
and easy to use interface for any application. NMi@omanager project
uses Java to program its GUI. While Java is a plalverogramming
language, it lacks the ability to interface withmpather programming
languages that are used experimentally, notablyieaband Igor Pro. In
addition, the Java Native Interface can make impgnnachine native
libraries difficult. We present a solution thatéeages the power of the
Micromanager platform to most of the common sangptnd image analysis
scripting languages. The API has been testedlwiliview, R, Scilab,
Matlab and python (with SciPy The API has plugins that can feed the
acquired images back into Imagegturning the circle to Java compatibility.

This toolkit was created with C#, a .Net langutgen Microsoft.

The .Net framework allows a great number of programg languages and
interfaces to work together including C#, visuasibaC++, python and
ruby, as well as many more. C# was chosen adqNt#tteframework
language for its power, speed, and also for itdaity with Java.

This tutorial will consist of a number of simpleagnples that show
how to access the micromanager core, a numbempiesiexamples of how
to control the camera and a variety of devices,fanadly a fully automated

version of the device.

Overview of Program structure.

Jav .Ne 3%
(Stand Alone DCOM
Application
T Matlab
, Device GUIs ‘ Python
4 R/Scilab
Scripting
- Visual Basic
A
¥~

A

C+ Micromanager
API
Hardware Camera Stage DAQ

Adapters

Figure 1: A general overview of all the ways thati can use the package

to link c++, microscopy devices and any numberighér level

programming languages.

Microscopy Toolkit is designed to leverage thesiderable power of
the Micromanager program for use in scripting aggtlons. In order to help

the end user in using the full power of this progra quick overview of the

Micromanager library is included.

The Micromanager library provides a consistenb$atterfaces for a
number of common microscopy tools such as camgltas wheels, shutters
and stages. These interfaces provide the meamidoomanager to talk to
either a Thorlabs filter wheel or a Leica filter @gt seamlessly. The
addition of new hardware adapters to the systenbeaaccomplished by
creating a new hardware adapter using the intesfdegéned by
Micromanager. Creation of these adapters is shmwihe Micromanager

website fittp://www.micro-manager.org/documentation.php

Once the Micromanager engine is set up, it isiptesso use the
overlaying API, which we call EasyCore, to contieé microscopy system
Graphical Interface. For maximum power, the Micamager.NET engine is
set up with two components for each possible meapyg device. The first
component has does all the hard work for scripiragdevice and handling
device properties. The second device is a graptaraponent that has all
the buttons for the user to interact. For an gtanthe package includes a
device component for running a signal 10 DAQ. TEhare two specific GUI
components that work with the signal |O componédhe is a signal
generator and one is a galvo driver. All composevidrk as plugins so they
can be inserted into the code with ease to makprtbggam even more
powerful.

This allows the maximum flexibility and power oktiMicromanager
framework, while shielding the user from the comjleof C++. Finally,
the framework allows microscopy devices to be addedMicromanager
which are difficult to control from C++, such asetNontrols, COM widgets
and activeX controls. Everything can be linkediohe easy to use
package. A document on the engine will be createdfurther time. This

will be specific for the .Net framework.

| nstructionson usewith LabView

This help file is structured as a list of commoicnwmscopy tasks in
LabView. Along the way, we will try to explain hotlve different
components of the code work together. The exangiesissed here are
available for download in LabView version 8.2.

Creating Cameras

Getting to the data: converting imagesto arrays

Creating a streaming camera

Adding Stage control

Programmatically adjusting device properties

Adding ajoystick

Automatic View

First you'll get an idea of how to work with the eroscopy toolkit in
LabView and then we will work our way to a virtualcroscope with a
camera and a stage with a joystick control.

It takes several steps to make a simple applicdiianopens a camera
and then displays the image on the screen aftértgbtness and contrast
have been adjusted. We have to import .Net intoriealy then we have to
start the EasyCore API and then we will createmaeta. Along the way we
will explain two things that most LabView usersivaippreciate a tutorial
on: how to import a library and how to invoke nadés example of the

resulting Front Panel is shown below.

NIPropList
ActualInterval_ms 0,00 A

Binning | 1
CooTemperstite 5 s2s w0 ;
Camerallame Cameralame
ColorMode. | Grayscals
Description Description
Expasure { 100.00 |
Ezin 1 E 100
Name Name
ofset '
R 1y
MNILLTGraph

STOP

Importing .Net

PictureBoard

The first thing that must always be done is totsteer Micromanager core.
This is performed by starting the .Net Invoke Nodie LabView this is done
by opening a blank VI, and while in the front pangjht clicking on the

front page and finding the

Wil
3 3 3
=
LJser Controls

Select a Contral...
Micromanager .MET
RF Communications

Vision

For Labview 8.0 the controls will appear in a submef .NET & ActiveX

Controls

43 Controls Qsearch | R '1

Medern N

Syskem [=1 e ey] ey | 1y) 11) 112) 1o] o e | i)
0 0 h

Classic v ElEEEEECEEEEEE e EEE
Express PN 4 [S S S S 1
T3 - » I 5 A S
:}A‘ [‘i 0 D 0 Tl T 0 T T v o
N”mc”is B'-'tt':"": T.E’XtCtTS 0 0 i i
i o il A 0l Ol il

urn Inds LEDs Text Inds 0) 0) 0 O | N
4 il 0l 9 0 i Ol i

Graph Indicat.., A0 S S S S S 0 S [El

T AR I o FOEEAAECo
MET & ACex o EIEEIEE RS RS R RS RS EERTEtE]
Select a Contral... _m MET& Ackiver

Mision L

Fy rng!—| net net
001 [) Sl E E=i

MET Conkainer Month Calendar Picture Box Rich Texk Box

<=1 Micromanager, NET

nEet net net

B, E E Y

AllDeviceHold, .. ChannelSetu. .. Jovystick LUTiEraph

net net net net
MIEasyCare MIImagePrac, .. MILT Graph MIPrapLisk
net net net
Zo SCripEnGMi., &, B B
PictureBoard Propertylist SingleDevice, ..

Micromanager.NET tab and then clicking on the NiEawe box. Drag the
NIEasyCore control to the front page to begin. Miisallow Labview to

use the functions of the Micromanager library.

Invoke Nodes
Now switch to the block diagram to wire this simpbeample. Right click

on the NIEasyCore terminal, use the .Net paletsetect the invoke node as

shown in Figure 5. This lets the Labview prograath functions inside of
.Net.

MIEasyCore

Visible Items 2
Find Cantral

Hide Control

Change to Indicator

Change to Constant
Description and Tip...

MET Palette 2 Invoke Mode (.MET)
Create 4] 3 |¢ ;e;{l,r';,@
Data Operations b G

Advanced 2

uu[
J View As Icon

Properties

4] Functions g Searchi

Programrming 4

Measurement IO r

Instrument IO r

Vision and Motion]

Mathematics »

Signal Processing r

Data Communication k

Connectivity 4 |

Control Design & Simulztion 3] Connectivity

SignalExpress NET

Express [im * ﬂ’ @ > et

5. | = Mo b E J J La

% i&h s Libraries & Ex... Source Control Part IfO Web Services
Mext net 2.4~ active.?| i ' |

@ [& 31 NET 5

addons | MET Windows Reg... [E

Favarites 3 — I_I_l_l_l_H—l—l—H_LI_LI?U% - =

-

IJser Libraries
Select a VIL.. - .

RF Communications 4

e

-

Figure 5. Two ways to get to the .Net Invoke nodes.

Now wire the NIEasyCore terminal to the invoke riedeference node and

then right click on thé ethod line. As you can see on the Block diagram as

well as in Figure 6, the NIEasyCore terminal hasynzallable functions

related to its function as a front panel contrbhere are only two functions
that should interest most users. $eskect Method and then find

StartEcor e from the list.

MIEasyCore

Figure 6.

_P! w NIEasy

Metho

Visible Ttems

Help For Invoke Mode

Description and Tip...

Breakpoint

Select Method

NET Palette
Create

Replace

>

- N4

v v w

Scale(Single ratio)

Scale(SizeF factor)

ScrollControlIntoView({Contral activeControl)

Select()

SelectNextControl{(Control ctl, Boolean forward, Boolean tabStopOnly, Boolean nested, Boolean wrap)
SendToBack()

SetAutoScrolMargin(Int32 x, Int32 v)

SetBounds{Int32 x, Int32 y, Int32 width, Int32 height)

SetBounds{Int32 x, Int32 y, Int32 width, Int32 height, BoundsSpecified specified)
Show()

StartEcore(String CoreFilePath, String ConfigFile)

SuspendLayout)

1. Starting EasyCore

(This lesson corresponds to Tutoriall_Start Cameirathe examples
folder)

There are two ways to run Micromanager.NET: 1. ddly set up the
cameras and peripherals and then run all the opesan the Labview
script. 2. Load a hardware config file and thsteh in to the self standing
operation of the suite, while directing operatifnasn the script.

Option #1 is good for learning how to use the suteit is taught first in the
manuals, but option #2 is better for operationgi@oshould familiarize
yourself with the manual options and then startkwmr the hardware config
files.

StartEcore requires one parameter to start. Akldéing is used to
provide this parameter indicating to StartECoré thare is no config file,
config files are a powerful method to define themnmscope and then interact

with the system. The result should resemble Figure

MIEasyCore
error out

k

it n " NiEasyCore plileal)
E StartEcore i =
Figure 7.

StartEcore now provides most of the important fioms for
controlling the whole microscopy setup, but NIEasg&€has one more
function that makes using Micromanager.Net easiéis is the GetHelpers
function that is dedicated to making a few stessezan the Labview

environment. This function must be called onleathe StartCore Node has

been called. In order to perform this step, a iNake node is again placed
on the block diagram and the reference is wirdthégrevious node.

[P P i b e e u

MIEasyCore error out
| & ¥ NIEasyCore [|[=a - u
= StartEcore o |IERaE n ¥ MIEasyCore 4
v ConfigFile GetHelpers f—
Figure 8.

la. Creating a Device

GetHelpers contains functions for creating a nunalbeevices in the
Labview environment. We place another .Net Invo&de on the block
diagram to create the camera device. We must nosvthhe GetHelpers
block to the new invoke block and then provide{8dent parameters to
determine what kind of camera is desired.

MIEasyCore arror out
B . NIEasyCore D[L
Iﬁl_' " StartaEs'T:ll'EDrE -’i" :'='_n g"-} MIEasyCore g
T Confighile GetHelpers Lo MiHelpers Rl
] CreateCameraDevice v
v DeviceMame
|Dem|:5h'eamingl:amera |""""" ' LibraryMame
P + DeviceAdapte
DStreamCam
Figure 9

The first parameter, DeviceName, is arbitraryssdito index the
camera. For simplicity it is called “camera”. Timext parameter refers the
Micromanager library name, last is the DeviceAdapt&he names of these
parameters refer to the device adapters that telidvhanager how to
function. If you need to find these names, thera VI in the example folder
calledFindLibraryAndDevice.vi that shows the names of the libraries and
their contents for all adapters on the system. tamualso ask about this on

the forum.

In this case we are just building a demo camextdbes not attach to
any hardware. This is done by telling the systemdex this device as
“camera”, use the library “DemoStreamingCamera” famally used the
“DStreamCam” for the adapter. This gives a vemgde and boring
demonstration camera for the system.

Next an invoke node is used to MakeOfficial shawfigure 10,
meaning this camera should be used as the prinaangm@ for the whole
system. Last, the property list has to be attatb@admera to give the user
full control of the camera on the front panel af ¥il. This is done very
simply by telling the camera where its propertyisswith the SetPropUl

Invoke node as seen in figure 10.

g w MiHelpers g

-
Camera CreateCameraDevice v
- &

B s Camera
lDemDSteamingCamera |""""" 2 MakeOffical 2

DStreamCam

So Camera 5
SetPropUI
rTargetPropertyList

Figure 10.
1b. Displaying an Image

Now the camera is turned on and ready to gos ribw time to
acquire the first image. This is done by usingtl@o.Net Invoke node
which is connected to the camera line and themod that is selected is:
SnapOneFrame as shown in figure 11. This methabtane parameter,
Displaylmage. This parameter is for more advansatje and is set to

false for now.

L 5

ﬂ"-} Camera ,
SnapOneFrame ¢
EHr e v DisplayImage

Figure 11.
The result of this node is a Corelmage. Thispswaerful tool for the
manipulation of intensity images. It can be uswdrhage addition,
subtraction, extraction of statistics and to chaihgemage into a Labview
array. For now, it will just be used to set thatcast of the image and
display it on the screen.

A Look Up Table (LUT) is a common method to adjiln& contrast of
microscopy programs. The NILutGraph is designelaeip the end user to
set the contrast easily. So the Coreimage isteghe NILutGraph for

contrast adjustments with a .Net invoke node awsho figure 12.

Bk Camerg o g'“} LUTGraph E
SnapOneFrame ! | ProcessImage f—
""" v DigplayImage » cImage
Figure 12.

This results in another Corelmage which has itdregt settings set as
defined by the NILutGraph control. This image @swsent to the

PictureBoard for display as shown in figure 13.

Du# Camera 3 % LUTGraph & % " PictureBoard

SnapOnEFramEr—L ProcessImage "| SendImage
------ + DisplayImage v cImage ' cImage

Figure 13.

We have now managed to set up a camera, makéhéesnd user can
adjust the camera as desired and then taken agictinis took 8 simple
invoke nodes to accomplish and can be greatly ing@taipon with even a
slight level of programming ability. The next seot will show how to
make an even more effective microscopy setup.ait be useful to now try

this program with your own camera to check thegrarince.

2. Getting the Data: Converting Imagesto Arrays

(This tutorial corresponds to the Tutorial2_Imagenipulation.vi File in
example Folder)

It may be useful for your particular applicatianhiave the data in an
array format or in a format that can be used wWithNl| vision package.
This is done very easily after looking at the Tiglr.VI file you can make a
few small modifications. The Corelmage object Aasriety of tools to
convert the intensity image into a variety of arrgyes for use with normal
Labview or NI vision components. The Corelmageslaas a large number
of functions for these types of manipulation. sihe proceeding example,
we will insert a command to convert the image t@aany. Figure 2.1

shows this insertion.

.

g'"} Camera ,
SnapOneFrame + _E;--+ Corelmage _F;'
r-{+ DisplayImage GetArrayIntls &
Figure 2.1

By right clicking on the GetArrayIntl6 invoke noded then usin@elect
Method you can see that there are a number of GetArrayX}thods.
Select the appropriate data type and then the pwifilbe an array
containing the image in an array type. This agay be manipulated in any
number of ways, so the inverse will be performed @éwen the new image
sent back to the PictureBoard as shown in figuze 2.

7|5 "+ Corelmage
GetArrayIntls » ﬁ'"} Corelmage g
% CreatelmageFromArray +—
[. ¥

Figure 2.2

You must select the correct input type into the
CreatelmageFromArray method. The result is a nevelthage that works
the same as before for display and manipulation.

3. Streaming Camera/ Saving | mages

For some situations, it is necessary to have dh@eca operate in a
streaming mode. It is also important to save ymages. This means that
the camera sends a series of images to the compitttemo break. This can
result in a flood of information entering the camefor this mode the

camera is started in the same manner as in exdmple

[Helper can be used to create device controls and to cast from general to less general types]

-ﬁ: & " NIEasyC
a™ asyCore ,,
[&] Rl — SwrEcoe [y aTr—
'D:“ i i NH\elraDe"\cé-'
O = 3
[ECore {output of StartECore)
s [Reference is to the camera device conirel, so now all work is done drectly with the camera
[tutorial
Bb
Figure 3.1
Next working with streams requires 4 commandsctvifigure 3.2
shows.
Sod Camera 5 (5 Camera e & o Camera
StartSequence GetBlodkingSequenceFrame » EndSequence
v MumFrames v
L]
+ DisplayImage Dub Camera O
GetSequenceFrame v
Figure 3.2

StartSequence must be called first which tellsrdtitanager.Net to
set up all the variables for a sequence acqui nfust specify how many
frames the camera should send, as well as thevatteetween the frames in
milliseconds. Last, you can specify if the intdrsystem should display the

image. This option should be false at this time.

Next, the frames need to be read from the buBehay are grabbed
from the camera. There are two options provided.he
GetBlockingSequenceFrame waits until a new franaeggired and then
the image is returned, GetSequenceFrame will nead the buffer and
return an image, a null, or an error dependingherstate of the buffer. Itis
you requirement to deal with these eventualitiéss recommended that the
GetBlockingSequenceFrame is used. Last the Segstoaild be formally
ended with EndSequence. Tutorial 3 gives a sirapdanple of the
sequence tool in action.

Last we save the last frame from the sequencgardifferent
formats. This is done by calling the Save .Netke/Node on the

Corelmage after it comes out of the camera.

1
1

- g n Corelmage g

_ Save
i Filename

¥ v Multipage

Figure 3.3
You must specify the flename. The extensiorheffilename will
determine what format the file will be saved. dluyare saving a stack, then

the multipage option can be used.

4. Adding Stage Control /Adding More Devices

(This tutorial corresponds to the file Tutorial5 n@&a and Stage.vi)
Adding a stage to the camera is even easier thakirvgowith the camera.
First you should tell EasyCore that you want totsiad stage device. This
Is done with the line from the GetHelpers node. ekample is showing in
figure 4.1. Information about the meaning of diltlese .Net invoke nodes

is shown in section 1.

S NiHelpers

CreateXY5tageDevice » B s ¥yStage O
' DeviceMame

Ly £ MakeOffical
] LibraryMame
F v DeviceAdapter
XY Stage
S+ XyStage N
SetPropll
rTargetPropertylist
Figure 4.1

After these nodes have been passed, there anea@femands that

can be sent to the stage to control its positities€ are shown in figure 4.2

Gt XvStage 5| [Bed XyStage 8| (Db ¥vStage B
MoveStageRelative MoveStageGuarantes MoveStagelbsolute

N XyStage L [W¥Stage
StopStage GetStagePosition

Figure 4.2
MoveStageRelative will move a distance relativéhnecurrent stage
position, it will return before the motion is coref#. MoveStageAbsolute

will move the stage to an absolute position, it vaturn before the move is

complete. The meaning of this absolute positigredéds on the make and
type of the stage and should be checked with yguipenent manual. Last
Is MoveStageGuarantee. This Invoke node will deedstage to some
absolute position and then return after that pmsitias been reached.

If you wish to stop the current motion, StopStegesed and last if
the current position of the stage is needed, Gg&éBtasition will return the
position as the stage equipment reports it.

Now we will connect the output of CreateXY Stageidewo the
MoveStageRelative node in order to move the stegena. In order to
control the stage we use two sliders, one for tlexiX and one for the Y
axis. This is for simplicity and the Micromanagdpet library provides a
nice joystick control for this purpose. This jagktcontrol is shown in later
examples. The MoveStageRelative node is placedem@swhile loop as
shown in figure 4.3 so it will be called over arghe. By default the
previous command is cancelled and then the new @mdns used to
control the stage. The sliders are set back tirneorder to have the stage

stop once the mouse releases the axis slider.

[The sliders work as a very poor joystick for the stage. Micromanager.net also provides a nice joystick that will work
with any "normal” computer joystick, but for darity, We will just work with the sliders here,
foooooooooo DoOoOoOooDOoooO0OoO0O0O000O0O0o0oDoooooooooon

xMation

L]
v
-1

ao+ XYStage §
MoveStageRelative

Y Motion
10-
b

100 0000000000000 000000000000000000000000000

This same loop should contain the code to acqmegées. In this way an
image will be acquired while the stage is adjustialving precise
adjustment of position.

The tutorial camera does not change with the gtag#ion as the
demo camera does not communicate with the deme.stag

Any further device can be added in a similar fastallowing easy

control of the microscopy setup with any numbedifference devices.

5. Programmatically Adjust Device Values

(This chapter corresponds to the file Tutorial6_iDeProperties.vi)

It may be required to change the various parametieeach device
within the program instead of just allowing the ugeadjust these values
from thePropertyList. There are a number of tools to control all the
devices in a consistent and powerful way. Firgt) gan get information
about the device by querying the device for itpprty information. After
setting up a camera as was done in example 1, anweke node can be
called, GetDevicePropertyNames. This node wilime@ll the properties
associated by the device adapter as shown in figareThis list changes
from camera to camera, you must make allowancegolar own equipment.

GetDevicePropertyMames

IAchJaIInter'u'aI_m
IBinning
ICCDTemperamre

=

CameralD
Camerahame
ColorMode
Description

Exposure

ﬂ g Camera ﬂ

GetDevicePropertyMames +

Gain

D
-
S
o
o
-
fName

Figure 5.1

These properties names are all case sensitiveutsmyst get both the
spelling and the case right or an error will beagated.

Once the property names are know, it is quite &asyanipulate the
values as shown in figure 5.2. SetDevicePropettiesvs a new value to be
placed in the property. When this is done, the®@ryList will also be
updated for the end user to see what is happer@egDevicePropertyValue
will query the program for the current value. Witlese two commands you
can control almost any part of the microscopy set@pe thing must be
considered, the information must be passed asg $tr all variable types.
This is a feature of the Micromanager core to allbevmaximum control
and flexibility for the properties. It is quiteaightforward to convert the

values to strings and back to values in Labviewyammdcan see this in the

tutorial VI.
g'"} Camera g B Camera &
[Exposure |y [SetDeviceProperty SetDeviceProner trVaine: e
FRE S o
Figure 5.2

Last, it may be desirable to write a VI that addaptwhat camera is
being used. This requires just one more .Net Ievokde that returns all the
information about a property to allow full contarid advanced FrontPage
information. As shown in figure 5.3, GetDevicePnapmfoDetails returns
all the information about what a property can d@u must specify which
property you need the info for and then you will genumber of variables in
return. First is the current value of the propenigxt is HasLimits. This is
true if the value must fall between a certain maa min given by
MaxValue and MinValue. These values are meanisgf@dasLimits is

false. Nextis the property type. Types can bddinString, Float, or
Integer. Some times the properties are only tfeereeporting, so ReadOnly
Is set to true. Last, if the property has ongetof allowed values, these
will be specified with HasAllowedValues and thee thalues will be in
AllowedValues in a string format. With this infoation it is possible to
construct your own control that functions like ti@pertyList or for the

program to already know what the limits can beg@ain.

s Camera o

GEtDEViEEPFDpEFWII‘IfDDEtE“SI-

r PropMame

valle

HasLimits

tType
FeadOnly
HaszallowedValues

Figure 5.3

6. Advanced Joystick Control

(This tutorial corresponds to the file Tutorial7ystick Control.vi)

As Labview does not have a nice joystick for ugh e stage, the
Joystick Control is provided. Click on the Menubathe top of the front
panel, thel oolsimport/.Net controlsto palette. Now click the browse
button to navigate to the directory with Micromaaadlet. There you will
find a file called Joystickinterface.dll. Therewoan click on the only

available control, the Joystick as shown in figbre

., Add .NET Controls to Palette

Aszembly

JoystickInterface(1.0.0.0) &

Controls
= JoystickInterface ~

Joystick

Destination

C:\Program Files\Mational Instruments\LabVIEW 8.6'\menus),
Controls\DotiMet & ActiveX

[QK][Cancel l’ Help]

Figure 6.1

Now you can place the joystick on the Front pamelrder to make it
useful. Do this by right clicking on the Front ghrthen finding theNet &
ActiveX menu and finding the Joystick Icon.

The result is something that looks like figure.6The orange ball can

be pulled around by the mouse to control the stageijll react to any plug

& play type of joystick that has been added todyrgtem. Further support
for other mouse buttons will be added later.

Joystick

Figure 6.2

The joystick has a few simple methods that candeel wn the block
diagram to control its behavior. First you mustiwect the Joystick control
to the interface and to the game ports. This reedeith the
BeginJoystickAction node as shown in figure 6.Bydu have a plug & play
joystick attached to the system, you can speaifg for the parameter, and
the joystick will search for the hardware. Thedveaire must not be in use

with any other application for this to work and

Joystick

Iﬁl_P ﬁ g Joystick g
BeainJoystickAction
SearchForPhysical Joystick

Figure 6.3

Once the joystick is started we can begin. passible to receive

event notifications when the joystick is movedimjust check the state of
the joystick on each iteration of a while loop. iSis done with the

GetJoyStickCoords node as shown in figure 6.4.s hbde returns the

current joystick state. The default returned vaduieom -1 to 1 for joystick
control. You must multiply this value by a scadetbr that is appropriate

for your microscope.

M True "t

10

5 2 &
Do+ Joystick G [=> B xvstage § n' Joystik :
?éet_'lo SﬁckCoord;! n : gIE v GetloyStickButtonState Lie i LolilL
y MoveStageRelative Buttons :

TF

> |

{loystick reports from -1 to 1 {can be larger with the mouse control)

Figure 6.4

Last, if you are using a physical joystick, youymash to know the
state of the buttons. GetJoyStickButtonState nstatl the button’s states
on each query. You must map the index of the aogyur particular
joystick. (This is done most easily by pushing bluttons and seeing what

part of the array changes)

7. Putting it all together/Labview in Full Control

(This chapter corresponds to Tutorial8 Camera eStaidfer.vi)

There are no new concepts introduced in tutorialg,instead an
example of how multiple devices can be integratéd & nice graphical
user interface to produce a very simple microscof@u can add scripting

at will with this setup.

8. Working with Channels

(This chapter corresponds to the file Tutorial9_1@teds.vi)

Channels allow the microscope to change its cordigpn in any
definable way and images to be made. These chaagdse movement of
filter wheels, application of lamps or changesxgasure. They always
include the changing of the properties of the nicope. We will start the
microscope in the same manner as we have forettther tutorials, with
StartEcore, GetHelpers and CreateCamera. But vee awldl a new .Net
control to the vi, so select the front panel arehthiools/l mport/.Net
controls browse to the Micromanager_net.dll ana tivken the names are
listed expand the channels tab and select ChartnplSentrol. Place two
of these controls on the front page. Next the okEnmust be created. This
Is done in the context of a ChannelGroup whicloisifl in The helpers

object as shown in figure 8.1

¥

g wa WIEasyCore g
GetHelpers ¢+

ﬂ v NiHelpers g

CreateChannelGroup

40 _|Niight channel Boark Channel [}-== v ChannelMames ¢

vChannelSetupControls »

ChannelSetupControl

ChannelsetupContral 2

Figure 8.1

You must provide names of these controls andaisarray of the
ChannelSetupControls. The numbers must be equad error will be
generated.

The Helpers object will generate a ChannelGroypathwith two
channels that are already defined. So now we gangmmands into the

channels.
..................................... ’
]
]
]
&+ ChannelGroup] B wd Channelstate &
GetChannel ¥ . AddCommand
v ChannelMumber v DeviceMame
Exposure | P Met me
;" J Parameters
L%
F 9
& 4 ChannelGroup § J D vt ChannelState 5
GetChannel v AddCommand
r ChannelMumber TR DeviceMame
IExposure fr—1r Methodnam
5 v Parameter
Figure 8.2

Channelgroup has a GetChannel command thaéxtihct each of the
channels. Then you can use AddCommand to setughtmnel. You can
have any number of commands, but in this case We@mly have one. The
devicename must match the device name from create@®evice earlier.
In the first channel we with to have a dim exposfré ms as shown in

figure 8.2. In the second channel, we have a loaggosure of 100ms.

g..-} ChannelGroup _F;
RunChannel
E_- ChannelMurmber

Figure 8.3

Last we enter into a loop to collect images. Nosvuse channelgroup to
switch from one channel to another to collect insag€he images are sent
first to one PictureBoard and then the other.

This technique is very valuable if a number ofrdies must be made
at the same time. Then the program can take ¢an@wotonous changes
and RunChannel is all the programmer has to uses i3 also very useful if
the end user wants to be able to change the chdafeitions as the

program is running from the ChannelSetupControls.

9. Image Processors/ Running Micromanager .Net

in Parallel with Labview

(Thistutorial workswith thefile Tutorial9.0 Image Catching.vi &
Tutorial9.2_Register Paint Board.vi)

There a number of situations where you would watiview to run
some piece of equipment, while Micromanager.Nettiposns
independently. This will greatly improve the speaslwell as allowing you
to do less work in maintenance of your VI. Thidl aiso be an
improvement for flexibility once you learn how tmplement a hardware
configuration file.

To introduce the concept of imageprocessors, Wenait to show the
information about config files until later. For $hVI we start in the
normal method of StartEcore, GetHelpers, and C@zateeraDevice as we
have for most of VIs up to this point. After thischange is made. We must
register the PaintBoard surface directly with Ecasewell as assigning a
LUTgraph to the PaintBoard surface. As showngurfe 9.1, this is
performed with the AttachLUTGraph and the Paint&cef.Net Invoke

Nodes.

PictureBoard 2
I
&+ PictureBoard & e EasyCore
MILUTGraph 2 AttachLUTGraph PaintSurface

LutGraph b PaintSurface
i L3

o =

Figure 9.1

Now Micromanager.Net knows how to handle any imhge is
produced. You tell it to take images by telling tamera to use the

S Camera §

StartFocusMode invoke no(startfocusMovie | You can run the VI

(Tutorial9a.vi) at this point and you will see thila¢ images are collected
very quickly.

Now you have the images appearing on the screeklgubut they
are not being saved. Micromanager.Net providegthoa to listen in on
the stream of images and then manipulate thenmedi@g This is by
inserting an imageprocessor. You must place the&eProcessor on the
front page. You can have multiple imageProcessoeseded, each will
react to the emission of a new Image individually.order for an
ImageProcessor to work, it must be registered wabyCore. This is done

with RegisterAsimageProcessor

MIImageProcessor

Iﬁl_' g"-} MIImageProcessar 5
RegisterAsImageProcessor v
ol EasyCore
i ' ProcessorMame
. Blocking

You should give the processor a descriptive nainyeu planning on
adding multiple ImageProcessors to the system. niost decide if you
want the image processor to be blocking or nott i$fblocking,
Micromanager.Net waits for your code to finish lsefacquiring the next
image. Otherwise it just sends all the images agdast as possible. This
can be good, unless the Labview system is too almithe memory fills up.

All three examples use Blocking because it is safer

Now Micromanager.Net knows that you wish to predesages, it
knows where you want to display the images, andhaue told it to start
getting images. Now a listening loop is needechtich the images. This is

accomplished with a normal while loop.

ﬂ s Image_Processor ﬂ
MumberOfStackImages -—‘

IR

%+ Image_Processor | 1+ Image_Processor | |

Getlmage Y PutImage
Mt StackImageMumber v StackImageMumber

|—r ProcessedImage

E--+ Image_Processor E |_
= 1B B NILUTGraph 3 [|52ve Filename 2|} B g Corelmage B
HasStoredImage n rapn u n 92 =

ProcessImage ¢+ Save
qr cImage 4 Filename
v Multipage

—

!,h! %} Image_Processor !;‘;

ImagesAreProcessed

B

The while loop checks if there has been an imagaiesd, and when one is
in the ImageProcessor buffer, The program movésamext loop. Instead
of a single Image like there has been before, |y @f images is returned.
This is due to the channel stacks. They are retlas arrays to help any

processing. So we can check how many images dhe iimageStack and
then use Getlmage with the proper index. The imsfgen manipulated,

and finally Putimage sends the image back to Mienoager.Net. The very

last step of the process is to call ImagesArePsmrks This must be called

as it notifies Micromanager.Net to get new imagéBis must be outside the
loop and must be the last thing that is executdange errors will appear if
this rule is not followed.

Now this example does not make sense as it saeeg inage to the
same name, but it should be easy for you to atl&ptour needs.

10. Automatic Channel/Stack Handling

If you want to acquire a number of images fronitiple channels
in a way that does not require a lot of programnafigrt. We are almost
there with Tutorial10b.vi so we will start therEirst the Microscope is
setup in the same way as normal. First StartE€aedlelpers,
CreateCameraDevice (see chapter 1). Then we haviesi new concept. |
wish to have each channel in its own window, sastmegister the same
number of windows as channels.

This is quite easy in practice as can be seergiré 10.1

ictureBoard 2

{ILLIT!

=1
i
M

E‘v

& = PictureBoard 5]
AttachLUTGraph
b Lutizraph

aph 2

g"-} EasyCore g
Paintsurface
olH— Paintsurface +

C

g w PictureBoard g
AttachLUTGraph
o LutGraph

= == =
= L
B[S cHEfE| B
= o =5 & . (]
o =]
f=] o
o
=8
el

[l

Figure 10.1

First a LUTgraph is attached to each Picturebdaet) the
PictureBoards are wired into an array and then Easy s notified of the
addition.

The next section of the graph shows the standaikps for setting
up a channel. See chapter 8 to get a better lomat &ow this works. We
are now ready to acquire images with the PaintBoeedistered, the

channelgroup registered and the channels registered

The acquiring is performed by the RunChannelActjoisiinvoke
Node. There are a large number of parametersrtastt be addressed.
ActiveGroup indicates the created Channelgroupu &an decide to use a
different camera to get these images than the Wefamera, so you must
provide the device name. Next you choose the tiora one frame to the
next, last you can decide here if you wish to dhieesequence of images.
You must specify a directory and a root filenarhumbers will be added to
the filename to make the frames distinguishablast is the number of

frames that you wish to acquire. -1 results inemeanding images.

g w EasyCore g -
FunChannelAcquisition
v ActiveGroup

v CameraDevice

v TimePerFrameMS

v Save

; path

£

5 Ename

J MumFrames

A second powerful help in getting stacks is the RstiackAcquision.
This Invoke node has all the tools needed to madtack, a stack of all the

channels, and many other options.

g w EasyCore g

RunZStackAcquisition
v ActiveGroup

. Lameral'evice

L FocusDevice

v TimePerFrameMS

FirstStackThenChannel

v Displayslices

v CurrentSlicelsMiddle
Mumslices

L]
L]
J Save
L]
L]

In Tutorial10.vi we return to ImageProcessorsyoi wish to
manipulate the channel data in anyway, the imagessors provide the best
method. Itis clear that Tutorial10.vi is the sam®ugh the whole top of
the program as Tutorial10b.vi was. It is also cteat the Imageprocessor
step was just covered in chapter 9. When the inmsagaptured by the
Imageprocessor, it is sent through a trivial séey then returned to the

main program. This is done for both channels asvahoy the for loop.

[True 't

ﬁ w4 Image_Processor ﬁ

MumberOfStackImages ']
N

ﬁ wa Image_Processor E B

= ﬂ'"} Image_Processor gl
Getlmage IS ———
»_Stacimageumber M StackImageMumber
.3 -~ 1 _ __ O -
ﬂ'"i Corelmage 5 v ProcessedImage

DivideByScalar

error out
[==
E—‘ % v Image_Processor . ,ﬁ
L=l

ImagesAreProcessed

% v Image_Processor nf

HasStoredImage

stop

| STOF -

This could be done with separate processing fdn ehannel. This is only
important for the user’s application. Last, youstuotify the
Micromanager.Net program that you are done withithage by using the
ImagesAreProcessed invoke Node.

11. Loading from HardwareConfig File (The easy

way)

(This Tutorial links to Tutorial_ConfigFile_Devicgontrol.vi,
Tutorial_ConfigFile_Image Capture.vi, Tutorial_CmyHile_Make
Hardware Config File.vi, and Tutorial ConfigFileodd Config File.vi)
After all these other channels, this chapter iagto feel like a
letdown. It makes it so easy to control the micope with so little
programming. First we must create a Hardware @Qdfife. This is done

with one of the commands in NiEasyCore called Nerdi#are Config.

errar out 2

= o

=
m) E
= o NIEasyCore R % B4 NEasyCore &
= FStale-Z_DI'E 2 MewHardwareCaonfig —L
:EQ:E L ~r _ ConfigFilePath
g v ConfigFile y Confo

g abap-d
B

Test3. xml

When this command is called, you must specify wltlee config file
should end up (directory name) and specify theigdiié name. It must be
a name that ends with xml, just like the example.

A dialog will pop up and you must answer the guestto setup the
hardware. An example if shown in figure 11.1. DwyiceUl list should be
easy to guess the correct GUI from. Some expetatien can help find the
rest of the devices. The FindLibraryAndDevice.i& fivill show all these
devices spread out to help you to identify youdiare.

¥ HardwareSetup M=
Common Devices
Enabled? Device Library Device Adapter Device Ul
[v] Camera |De1noStreamingCamem v| !DStrearnCam v| iCamemProperties v|
XY Stage |DemoCamevE| w | |DXYStE|ge w | iXYStageF‘mperties b’ |
Focus Device |DemoCamem _v| |DStage v! !ZStageF'roperties v|
Filter Wheel |DemoCamem w | |DWheeI w | FiterWheelControl w |
More Devices
Enabled? Device Name Device Library Device Adapter Device LI ﬁ:
		None ,v	iCannot Open Library v	iNone v	
		None v	iCanno{ Open Library v		None v
		None v	iCannDt Open Library v	INone v	
		None v	iCannot Open Library v		None v
		None v	lCannot Open Library v		Nere v
		None v	iCannot Open Library v		None v
		None _v	iCannot Open Library v	iNone v	

|

Interface Hemerts

Display | lEeNEE ¥ Dedicated COM Port b

Joystick
Image Save and Record Tools

Corelog Viewer

MNext Step

Figure 11.1

Once everything is selected you should click tha sep button. This will
bring up the properties page for your first dexaseshown in figure 11.2

SetProperties

Mow you will get 3 chance to set up the start up configuration of the devices. You will see the properties for each device, and
then when this device is finished, then you will be asked to set up the following device.
Device:
Save Property Property Name Property Value A
il Actualinterval_ms [oo0
=] Einning |_-|
il CCDTemperature B E75
CameralD CameralD
CameraMame Camerahlame
=] ColorMode |—G|En,'sca|;
Description Description
4 Brpees [oos0.
[l Gain 0 5
Name MName
Ll Offzet |.3
B PixelType |Bb'rt
] ReadoutTime [ooo
o ScanMode [
2
Figure 11.2

To the left is checkboxes called Save Propertyis ineans that the
property in line with this checkbox will be includlen the hardware config
file. Some properties such as location and exgosiiould not be saved
normally, but others like axis assignments , sigrfilter wheel locations,
and COM ports should be saved here in the corlég Siet those special
properties to the correct values, check the saxeobthose properties that
you wish to save and then click Next Device to emtdwough the list.

When you are finished with the setup, the filesd il generated for this

setup and then you will be able to see your harewatup.

PictureBoard

nd Movies EZS'E”J‘S | Stac
Frame Index

Fiter Whesl Propetties | Flecord and Save Tools | Corelog || Joystich 4 &
d Montage | Fie Seftings |

Review Controls

Focus Settings
FrameRate (Sec/Frame) [1p |
Focus Mode Maximum FrameRate: 10
At Curren| t Exposure [] Autoset
Hat S Active Camera
- W =
Record
Videa
o i SnapShot =
Number of Frames (-1 for unlimited) |100 =
Save Filename 2l i
ave as Stac

Activate | Group Name

Channel Active

You already have a very capable microscope foirutiee lab.

Now to reopen the config file, the procedure isaxely easy. It

takes only three commands to be able to reachalli¢vices, channels,

channel groups and recording possibilities of Mmcamager.Net. Here is
the figure.

AlDeviceHolders

il g v AllDeviceHolders gn
= DisplayGlLIs
i eCore
I
= g wa MIEasyCore g
= StartEcore v - ,3: we EasyCore ﬂ
[E » CoreFilePath PictureBoard -
| ol it ConfioFie | b PaintSurface
TEst3.xml 5 |

So StartEcore is started with a config file, thafapfile tells EasyCore how
to put together the microscope. DisplayGUI putetbgr the FrontPage, and
finally PaintSurface shows the images. The ReaadiSave tools manages
the recording and saving as well as Channels amaahi@Groups. There are
stages, joysticks and all the other tools needed.

You may wish to have direct programmatic contfadame part of the
system. This is possible as EasyCore stays amtithe MainVI. Here is a

shot of the newly loaded interface.

Camara Properties | XY Stage Control | Focus Stage Propetties | Fiter Whee! Propetties || Record and Save Tool ¢ *
General Properties | Advances o

ROIs

Exposure

0 31.62 1000

[T] Subtract Background

Create Average
Image

The reason all the devices are named is so tregasily be accessed from
EasyCore. If we wish to interact with the cameuardy the acquisition, this

Is possible by asking EasyCore for access to theca

2 "+ NIEasyCore 3
& 5 GetHelpers o g'"} MiHelpers g
n " EasyCore CastTolCamera ¥
GetDevice v N Device
lmera [~ Devicelame

This is achieved by GetDevice. You must entem@ime exactly the
way it has been loaded. If you are not sure ohtmees, you can find them
in the hardware config file. Usually the cameraasnes “camera”, so we
collect the camera. Now, in order to use the pafé¢ine camera object, it
must be converted from a generic device into a camé&etHelpers
provides a number of functions for all the commenides, so we used
CastToCamera. Now a fully functional camera islatée for use. Since

the demo camera includes “Gain” as one of its ptes this is my target

property and | actuate the gain with a squaredsanee.

ﬁ w Camera g

SetDeviceProperty
' PropMame
' Prop¥alue

On the demo camera, this does nothing for the ismgou have to
navigate to the property page in order to see & moving.

If your application requires image processing,tkenageprocessor
works the same as it did in chapter 8 allowing éolhtrol of the imaging

processes.

Supplement

1. Adding Micromanager.Net toolsto the Controls M enu manually.

P Tutorial1.vi Front Panel

File Edit View Project Operate

Measurement & Automation Explarer. ..
Instrumentation

Compare
Merge

Profile
Security
User Mame...

Convert Build Script...
Source Control

LLE Manager...

JMET Ct I
Shared Variable ActiveX Controls to Palette. ..
Distributed System Manager Shared Library {.dll}...
Web Service...

Find VIs on Disk...

Prepare Example VIs for MI Example Finder. ..
Remote Panel Connection Manager. ..

Web Publishing Toal...

Control Design and Simulation

SignalExpress

Vision Assistant...

Advanced
Options. ..

ToolsdImport/.Net Control to Palette on the upper menu (This menu
sequence changes in some versions of Labviewhbtg ts always an
option to import a .Net control into Labview in tteols menu). This will
bring up a dialog as show in figure 2

£ Add .MET Controls to Palette

Select the .NET Assembly to Open
Assembly : —
‘ System, Windows, Forms(2,0.0.0) .«‘ Look in: |EI Debug |?¢| €] & [L
EIy (%] Emau.Cv.MLdl FMicromanager_App.exe &M
. A gEmgu‘CV‘U'I.dH M Micromanager_App.vshost.exe QMM
~ Controls My Recent | | SJEmgu.Ut.di i By
= System,Windows.Forms ﬁ| Documerts gfﬁ:pencvllom Tk ng
+ BincingNavigator = gFreEImage.dﬂ grrdllo.dll quz
. 2:tmﬂ @ %] FreelmageNET.dl [EMmca0.di BE
+ CheckBox ST i
Sy Deskiop (2] highgui110.dl %] MMCorecs_wrap.dl %] sa
& ComboBin SICSharpCcde.SharpapLib.dll gmmgr_dal_DemoCamaa.dll Esar
S — v Slnhaon,ACﬂVESKIN]Jb‘d]J Enung_dal_Den'ioSnemmgCamaram st
S s ,55—? %} interop stdole.dl =) mmgr_dal_NI_DAQ.dI [Elwe
S & 3 %] tnterop. WIA. i %] mmar_dal_MiMotonstage.dl (%) zec
o) My Documents
. Slnberop.wmd.b.dﬂ gmmg(_daI_PJMemﬂySbap.dll gzib
- Bestnation Slrony‘du gmmgr_dal_P\«tm.dﬂ
= gl'ronysaipmoﬂvet.dﬂ gmmgr dal_serialManager.dll
C:\Program Files\National Instrumentsi_abVIEW 8.6\menus), ? i A
oGS ALK ‘ W i |2 Joystickinterface.dil Qmmgr_dal_mlabmm.gn
L] [w1 L)
[Ok] [Cancsl] [Help] g File name: |Mju0manage|;ne{.d].| ‘lﬁ‘| i 0K i
L — Rlescftpe: |) v [cacdl]
—

Figure 2.

Click the browse button to import a custom .Netdity and then navigate to
the folder where Micromanager_net.dll is storethisTdll is usually stored
in the same directory as the directory where alldkample Labview Vls are
stored. Next, you will be able to select all tlesided controls from the .Net
library. You must double click on CoreDevices.Nbrirols to get to those
controls. Select NIEasyCore all the controls uriderNI_Controls tab as

shown in Figure 3.

= Add .NET Controls to Palette

Aszembly

Micromanager_net{1.0.0.0) J

Controls

w CoreDevices.Channels
o CoreDevices, DeviceControls
o CoreDevices.MNI_Controls
MIEasyCore
MILLTGraph

|

MIPropList
PictureBoard
¢ Micromanager_net
¢ Micromanager_net.Setup i

Destination

C:\Program Files\Mational Instruments\LabVIEW 8.6 menus),
Controls\DotMet & ActiveX

o] (e] (e]

Figure 3.

The Labview program will load and convert theset.tbntrols to
Labview controls and then you will end up backhat blank VI. Now you
must right click on the front panel of the VI totge the control menu.

Click the double down arrow on this menu to sed¢haloptions and you will

see a submenu listed &&t & ActiveX. Click this item and use the mouse
cursor to discover the identity of each contrdlace the NIEasyCore on the
front panel as shown in figure 4. Do the sameéterNILutGraph,
NIPropList and PictureBoard controls which will feeind in the same
submenu. All .Net controls which are imported barfound in this

submenu.

4 Controls Q Search 1

Modern
System

Classic

v v v v

Express

B} 4 4 k
*:.-"‘I". I m
rhe 1 e

’ 3 3 ’ i
1 ':}"’5:{:' " | b Em-m
Control Design & Simulation ¥
]
Signal Processing [‘D:] NET & ActiveX
Addons [
Iser Controls 'V [mEE net net net
Select a Contral... @] E E=§
RF Communications [E ¢ 2 ‘ net
Visian I @ Iﬂ
N i net net
|""A \) B =

Figure 4

